
Journal of Sound and <ibration (2000) 233(2), 297}310
doi:10.1006/jsvi.1999.2802, available online at http://www.idealibrary.com on
NON-LINEAR VIBRATION OF A TORSIONAL SYSTEM
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Non-linear vibration in a driveline which incorporates a Hooke's joint is presented in this
paper. In particular, torsional vibration due to #uctuating angular velocity ratio across the
joint is examined. Linearized equations are used for the prediction of critical speed ranges
where parametric instabilities characterized by exponential build up of torsional response
amplitudes occur. Predicted instabilities indicate the range of driveshaft speeds to be
avoided during the design of a driveline which employs a Hooke's joint. Numerical
simulations and bifurcation analysis performed on the full non-linear equations further
demonstrate the existence of parametric, quasi-periodic and chaotic motion. Onset of
chaotic motion was shown to be characterized by a quasi-periodic route.
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1. INTRODUCTION

A driveline connected by a Hooke's joint may exhibit severe twisting motion primarily due
to #uctuating angular velocity ratio inherent in such systems. This motion causes noticeable
noise, severe mechanical shakings, and premature fatigue failures in shafts, dog clutches,
gear teeth, etc. The occurrence as well as severity of these detrimental torsional vibrations
depend on the range of engine or drive shaft speeds. Torsional vibration caused by the
presence of a Hooke's joint in a power transmission driveline is investigated in this paper.
For this purpose, a linear as well as a complete non-linear analysis are employed. The
primary intent of this study is to examine instabilities as well as chaotic response resulting
from the inherent non-linearities of the system under consideration.

Porter [1] investigated this problem considering a linearized one-degree-of-freedom
model and predicted the critical speed ranges. His investigation was also concerned with the
e!ects of parameters such as sti!ness ratio and joint angle on the critical speed ranges. This
analysis was later extended by Porter and Gregory [2] to a non-linear model in order that
the resulting amplitudes of unstable oscillation may be predicted. Subsequently, Porter [3]
investigated this problem by considering a two-degree-of-freedom model and established
both the instability conditions as well as the amplitudes of the steady state motion.
However, the occurrence of combination resonances, the corresponding input shaft speed
ranges and conditions for instabilities were not predicted in the above studies. Recently,
Asokanthan and Hwang [4] employed the method of averaging and established
closed-form instability conditions associated with combination resonance. However, in the
above study, only the linearized equations were considered, and as a result critical speed
-Now at Industrial Automation Services, Newcastle, Australia.
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ranges due to quasi-periodic and chaotic motion were not predicted. In the present study,
critical speed ranges which correspond to the sub-harmonic and combination resonance
predicted by the linear analysis are "rst con"rmed using numerical simulation of the full
non-linear equations. In addition, the existence of speed ranges due to quasi-periodic and
chaotic motion is established. It is also shown that the resulting route to chaos is via
a quasi-periodic route.

The governing equations representing the torsional motion of the rotor system are stated
"rst, taking into account the well-known Hooke's joint kinematics, the #exibility of drive
shafts, and the viscous damping associated with the rotation of drive shafts. These
equations, when suitably linearized, represent the motion of a dynamical system with
periodically varying sti!ness and inertia. The method of averaging is used for obtaining
conditions for onset of instabilities in the neighbourhood of certain multiples and
combination of system natural frequencies. Numerical simulations were carried out on the
full non-linear equations and critical speeds were predicted using typical indicators such as
Lyapunov exponents, power spectrum and poincare maps. These predictions are also
con"rmed via bifurcation analyses performed with respect to the joint angles as well as
running speeds.

2. EQUATIONS OF MOTION

For the purposes of the present analysis, a two-degree-of-freedom system incorporating
a Hooke's joint as illustrated in Figure 1 is considered. This rotational system having an
angular misalignment of h is driven at a constant angular velocity X. The quantities a

1
,

b represent the input and the output angles of the Hooke's joint, respectively, while a
2

symbolizes the output angle of the system. The input and the output shafts have been
considered to be #exible and to have torsional sti!nesses S

1
, S

2
respectively. The moments

of inertia associated with the input and output drive systems are denoted by I
1

and I
2
,

respectively, which also takes the driven inertia load into consideration. It is also assumed
that both input as well as output shafts of the system are massless and their #exural
vibrations are considered to be completely prevented by the associated support bearings.
The energy dissipation associated with the rotational motion of I

1
and I

2
are taken to be

proportional to the viscous damping coe$cients C
1

and C
2

respectively.
Equations of motion in terms of the twist variables x and y may be derived using

Lagrange's equations (see e.g., references [1, 4]). The twist variables x and y are represented
Figure 1. Driveline incorporating a Hooke's joint.
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by a
1
!Xt and a

2
!b respectively. In deriving the equations, the linearized form of the

well-known kinematic relationship between the input and output angular velocities across
a Hooke's joints has been employed. The resulting equations are
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where O(e2) represents the smaller terms of order e2 or higher.
Equations (1) represent the torsional motion of the two-degree-of-freedom system

incroporating a Hooke's joint and contain periodically varying coe$cients. These
coe$cients are seen to be non-linear functions of the state variables. It is known that
closed-form solutions to these equations are not available, but, insight into the instability
behaviour may be obtained by considering the linearized equations. Equations (1) are
analyzed numerically in a subsequent section. In the sequel, a stability analysis is performed
by considering the linearized system.

3. LINEAR ANALYSIS USING THE METHOD OF AVERAGING

In order to examine the stability behaviour of the solution corresponding to the
equilibrium con"guration, the equations of motion are linearized and the resulting
equations with non-homogeneous terms deleted are examined for stability of their solution.
The linearized equations are
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which contain periodic coe$cients of frequency 2X.
Before performing a stability analysis, it is "rst necessary to evaluate the natural

frequencies of the torsional modes in terms of other system parameters. For this purpose,
homogeneous equations (2) are reduced by setting the misalignment parameter e to zero to
obtain the following equations:
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In equations (3), the quantity o represents the sti!ness ratio S
2
/S

1
. The natural frequencies

can be evaluated to be
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In expression (4), the upper sign refers to u2
1

while the lower sign refers to u2
2
.
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It may be seen from equations (4) that the natural frequencies u
1
, u

2
are always real for

any set of system parameter values and hence equations (2) represent the free motion of
a linear non-gyroscopic system. It is known that exact solutions, in a closed form, to the
governing equations (2) are not available. However, an asymptotic method such as the
method of averaging (see e.g., reference [5]) may be used to obtain an approximate solution.
This method has been successfully applied to gyroscopic systems which represented moving
elastic bands and chain drives (see, e.g., references [6, 7]). The method of averaging has also
been successfully employed for examining the stability of the present system governed by
equation (1). Complete description of the method and the analysis have been presented by
Asokanthan and Hwang [4]. The main results are summarized in the present paper.

It has been shown that parametric instabilities characterized by exponential build up of
amplitudes will occur when the excitation frequency 2X is in the neighbourhood of certain
multiples and combinations of the natural frequencies, u

1
and u

2
.

3.1. SUB-HARMONIC RESONANCE

In this case, the onset of instability occurs if the excitation frequency 2X lies in the
neighbourhood of 2u

p
, p"1, 2. Under this condition, Asokanthan and Hwang [4]

obtained the following closed-form expression for the stability condition:
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When the damping constants C
1
, C

2
are negligible, the instability condition (5) reduces to
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3.2. COMBINATION RESONANCE

In this case, instabilities are initiated via combination resonance which takes place when
the frequency of excitation 2X lies in the neighbourhood of sum or di!erence of the natural
frequencies (i.e., when X+Du

p
$u

s
D , p, s"1, 2, pOs). The stability condition in this case of

additive combination resonance can be shown to take the form
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where
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In the absence of damping, condition (7) reduces to
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It may be noted that unlike in the sub-harmonic case, in this form of instability, both modes
participate simultaneously. It may also be deduced from the instability conditions that if the
damping constants C

1
and C

2
do not satisfy the condition r"1, then the unstable speed

range becomes wider than the corresponding range for the undamped case. In the case of
combination resonance of the di!erence type, i.e., when the excitation frequency 2X is in the
neighbourhood of u

1
!u

2
, it has been shown that the system is always stable.

In order to predict all possible critical speed ranges and the associated response
amplitudes, the linear analysis is not adequate and a non-linear analysis is required. In
addition, a non-linear analysis will identify other unstable behaviour resulting from
non-linearities. It will also serve to con"rm the results obtained using the linear analysis. To
this end, since an analytical analysis is cumbersome, it is expedient to resort to a numerical
investigation.

4. NON-LINEAR ANALYSIS

Equations of motion (1) are used for the non-linear analysis of the system. For the
purpose of numerical simulations they are rearranged into the following state variable form:
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This set of "rst order non-linear state equations of motion was used to investigate the
non-linear dynamical behaviour of the driveline via numerical integration. The details of the
method of integration and the results are presented in the following section.
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5. NUMERICAL RESULTS AND DISCUSSION

In order to illustrate the applicability of the analytical results presented in the previous
sections, an experimental driveline that has been developed at the University of Queensland
is considered. The parameters chosen for the present study conform to the above
experimental system. The values selected for torsional sti!ness, moment of inertia and
viscous damping coe$cient for each shaft were S

1
"25 Nm, S

2
"250 Nm,

I
1
"0)042 kgm2, I

2
"0)084 kgm2, C

1
"0)04 Nms and C

2
"0)18 Nms respectively. The

damping constants associated with the "rst and second modes were selected to be 2% of
critical damping. For these parameters, the natural frequencies u

1
, u

2
associated with the

torsional vibration in the "rst and second modes take the values 13)78 and 96)61 rad/s
respectively. In this case, the primary combination resonance frequency u

c
takes the value

of 55)19 rad/s. All numerical integrations began from the initial conditions described by
[x xR y yR Xt] "[0 0 0 0 0] which is physically representative of the shafts under steady
rotation and no twist.

5.1. CRITICAL SPEEDS PREDICTED VIA LINEAR ANALYSIS

Figure 2 shows the instability regions for the above system parameter values plotted in
the excitation parameter-input shaft speed space using equations (6) and (8). The straight
lines attached to each region represent the stability boundaries associated with the
undamped systems. The "rst and the third regions shown in this "gure correspond to the
sub-harmonic resonances while the middle region corresponds to the combination
resonance of the additive type. It may be recalled here that the excitation parameter e is
equal to sin2 h, h being the Hooke's joint angle. It may be seen from this "gure that the
regions become wider with increasing joint angle. It can be shown that these regions become
narrower and become elevated in the parameter space if damping is taken into account via
equations (5) and (7). It is worth noting that the region for the additive-type combination
Figure 2. Instability regions predicted by linear analysis.
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resonance was identi"ed for the "rst time in a Hooke's joint drive system by Asokanthan
and Hwang [4].

5.2. CRITICAL SPEEDS PREDICTED VIA NON-LINEAR ANALYSIS

The non-linear dynamical behaviour of the driveline was then investigated numerically
by integrating the non-linear state-space equations of motion (9). All numerical simulations
were performed on a Sun SPARC Station IPX using DSTOOL, written by Guckenheimer
and DYNAMICS, written by Nusse and Yorke [8]. The fourth order Runge}Kutta routine
was used for numerical integration. Various tools such as Poincare maps, fast fourier
transform (FFT), Lyapunov spectrum, Lyapunov dimension and bifurcation diagrams of
time history and largest Lyapunov exponents were used to examine the non-linear
phenomena. All of the above indicators were obtained using DYNAMICS except the FFT
which was calculated within the MATLAB environment. The Lyapunov exponents were
calculated using the algorithm derived by Wolf et al. [9] and iterated at least 5000 periods of
the input angular velocity X to within 0.5% error. Renormalization was performed at
a frequency of 80 X. The Lyapunov spectrum and dimension were calculated to within 0.1
and 0.02% error respectively. At least 45 forcing periods were considered when using the
FFT for generating power spectra. In what follows, instabilities were identi"ed and
characterized for the cases of varying input speed and varying Hooke's joint angle.

5.2.1. Case I: Predictions for input speed variation

The characteristic non-linear phenomena were investigated initially by varying the
amplitude of the input angular velocity. Figure 3(a) provides useful information on the time
history of the system as the input angular velocity is varied from X"5 to 120 rad/s for
a Hooke's joint angle of 403. This "gure depicts the extreme values of the twist of the output
shaft, y, for a range of input angular velocity, X, after transient conditions have subsided.
Instability regions may be identi"ed in the "gure as large increases in amplitude of twist.
Note that bounded motion is still present in the instability regions due to the non-linearities
within the system. As illustrated, criteria for the onset of parametric subharmonic resonance
can be identi"ed for both natural frequencies in the form 2X"2u

p
/n; p"1, 2 for n"1, 2,

4, 6. 8. These critical speeds which correspond to the primary resonances are the same as
those predicted by the approximate linear analysis. In addition, a number of combination
resonances in the general form of 2X"lu

p
$mu

s
/n; p"1, 2, pOs, l, m, n being positive

integers, may be identi"ed from this "gure. Note that the resonant behaviour seen at X+63
and 106 rad/s were not predicted by the linear analysis and are the result of non-linearities
within the system. Other forms of this general combination resonance were found to appear
as the Hooke's joint angle was increased further. The variation of the maximal Lyapunov
exponent as the Hooke's joint angle was increased further. The variation of the maximal
Lyapunov exponent as the input speed is varied for the same set of parameters is depicted in
Figure 3(b). From this "gure it is evident that the parametric resonance phenomena
described above are indicated by a sudden increase in the maximum Lyapunov exponent of
the system. Note that the exponent may not become positive near resonance speeds as the
resulting motion is non-transient and bounded due to the non-linearities in the system. In
fact, the present deterministic system has a positive maximum Lyapunov exponent only
when the corresponding motion of the system is chaotic. A zero maximum Lyapunov
exponent indicates quasi-periodic motion which is non-periodic motion arising from the
combination of two or more distinct frequencies. As illustrated in Figure 3(b),
quasi-periodic motion occurs near X+28,52,63,106 and 111 rad/s which are the



Figure 3. Variation of (a) extreme values of steady state twise, (b) maximal Lyapunov exponent: h"403 and
u range of 5}120 rad/s.
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combination resonance frequencies. At these input shaft speeds the motion of the output
shaft is a result of incommensurate combinations of the natural frequencies u

1
and u

2
.

Chaotic motion, indicated by a positive maximum Lyapunov exponent, is seen to occur at
X+56,97)4, 106 rad/s.



Figure 4. Powder spectral density for h"403. (a) X"13)7 rad/s; (b) X"40 rad/s; (c) X"55)2 rad/s; (d)
X"96)6 rad/s.
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Figure 4 describes the power spectral density of the system for the same parameters at
four di!erent input shaft speeds X+13)7, 40, 55)2, 96)6 rad/s. Parametric instability is
evident when the input speed is close to each natural frequency u

1
"13)7 rad/s, and

u
2
"96)6 rad/s, as indicated in Figures 4(a) and 4(d), since the output motion frequency is

the same as a natural frequency in both cases. For the stable case depicted in Figure 4(b),
when the input speed is at 40 rad/s, we notice that the output frequency is at double the
input speed X due to the forced excitation resulting from the Hooke's joint angle as seen in
equations (1) and (2). This was the case for all stable speeds. The combination resonance
condition is indicated in Figure 4(c) for an input speed of 55.2 rad/s. The frequency
spectrum in this case indicates that the resulting motion is made up of a combination of
frequencies in the form X"nu

1
$mu

2
where n, m are integers starting from 0. The presence

of these mixing components in the spectrum indicates that the time-dependent processes are
strongly non-linear. These frequencies are incommensurate as the maximum Lyapunov
exponent was found to be zero for this input speed as seen in Figure 3(b), indicating that the
resulting motion is quasi-periodic.



Figure 5. Variation of (a) extreme values of steady state twist, (b) maximal Lyapunov exponent: h"203 and
u range of 5}120 rad/s.
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The Hooke's joint angle h is then decreased to 203, and a diagram showing the variation
of the extreme values of the steady state twist for input speeds from 5 to 120 rad/s is
obtained as shown in Figure 5(a). It may be seen that the amplitude of output vibration
is lower when compared to the case shown in Figure 3(a) and a number of instability
regions have disappeared due to the presence of damping in the system. In fact, for the lower
Hooke's joint angle, noticeable parametric instability is only associated with the



Figure 6. Variation of maximal Lyapunov exponent for h range of 0}403. (a) X"55 rad/s; (b) X"62 rad/s;
(c) X"97 rad/s; (d) X of 100 rad/s.
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combination and higher order sub-harmonic resonance cases. The diagram of maximum
Lyapunov exponents for the same parameters shown in Figure 5(b) also indicates the same
instability regions associated with sudden increases in the value of the maximum exponent.
Comparison between the results depicted in Figures 3(b) and 5(b) indicates that the
magnitudes of the maximum Lyapunov exponents are also dependent on the Hooke's joint
angle. It may also be noted that no chaotic motion is present for a joint angle of 203,
indicating that the onset of chaotic motion is brought about through increased Hooke's
joint angle.

5.2.2. Case II: Predictions for Hooke1s joint angle variation

Figure 6(a) shows a diagram of maximum Lyapunov exponents for Hooke's joint driven
system. For this case, the input speed X remained constant at 55 rad/s, close to the primary
combination resonance frequency (u

1
#u

2
)/2 and the Hooke's joint angle is varied from



Figure 7. Poincare map history for u"62 rad/s. (a) h"203; (b) h"303; (c) h"423; (d) h"453.

308 S. F. ASOKANTHAN AND P. A. MEEHAN
0 to 603. From the diagram it is evident that for Hooke's joint angles less than 143,
instabilities due to combination resonance are not excited. As the Hooke's joint angle
increases to 143 it is seen that the largest Lyapunov exponent increases towards zero but is
still negative indicating less stability and that the motion is still periodic. It is found that the
transient time to stable period-1 motion when Hooke's joint angle ranges from 0 to 43
increases with a maximum Lyapunov exponent. The maximum Lyapunov exponent is
0 throughout the Hooke's joint angle range of 14}603, indicating quasi-periodic motion.

Figure 6(b) shows a diagram of maximum Lyapunov exponents for a constant input
frequency X of 62 rad/s. In this case quasi-periodic motion occurs at a Hooke's joint angle
of 28)53 and continues for all values up to 413 as indicated by the zero maximum Lyapunov
exponent. For the interval of h in the range of 41}433 the largest Lyapunov exponent
becomes negative again indicating periodic motion. For Hooke's joint angles greater than
433, the maximum Lyapunov exponent becomes positive indicating chaotic motion. This
phenomenon persists until 473, after which there are many intervals of periodic as well as
chaotic motion until at 533 when the system settles to periodic motion again. This sequence
of stable to quasi-periodic to periodic to chaotic motion is a typical example of the
quasi-periodic route to chaos and has been documented by many other authors [10].
Figures 6(c) and 6(d) also depict similar bifurcation diagrams as Figure 6(b), also
illustrating quasi-periodic routes to chaotic motion for constant input frequencies X of 97
and 100 rad/s.



Figure 8. Power spectral density for u"62 rad/s. (a) h"203; (b) h"303; (c) h"423; (d) h"453
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Figure 7 shows a series of Poincare map diagrams of state variables y versus dy/dt for
simulations at a constant input frequency of 62 rad/s but for four di!erent Hooke's joint
angles while Figure 8 shows the frequency power spectra of the same cases. As illustrated in
the maximal Lyapunov exponent diagram of Figure 5(b), for the Hooke's angle of 203 and
an input frequency of 62 rad/s the system behaves in a stable manner. Figure 7(a) indicates
that this motion is a period-1 stable limit cycle and the output frequency is equal to the
Hooke's joint excitation frequency 2X"124 rad/s as evident in Figure 8(a). Figure 7(b)
reveals the quasi-periodic attractor on the Poincare map indicated by the closed curve for
a Hooke's joint angle of 303. This motion is identi"ed in the power spectrum of Figure 8(b)
by two distinct peaks and their multiples. The Lyapunov spectrum for these parameters was
calculated to be [0)0!0)826!0)826!1)444]. At a Hooke's joint angle of 423 the periodic
motion found in the Lyapunov diagram of Figure 5(b) is seen to be period-37 in the
Poincare map of Figure 7(c). The power frequency spectrum of Figure 8(c) also indicates
this through the "nite and commensurate frequencies displayed. Finally, at a Hooke's angle
of 453, possible chaotic motion is indicated in Figure 7(d) by the in"nite set of highly
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organized points known as a strange attractor. The spectrum of Lyapunov exponents was
calculated in this case to be [0)308 0!0)282!1)278!1)844], the positive value indicating
possible chaotic motion. The power spectral density of Figure 8(d) depicts this also with
a broad spectrum of frequencies. It may also be observed that the prediction of chaotic
motion at this angle is not completely conclusive since the largest Lyapunov exponent is
only slightly greater than zero and also the Poincare map appears to be well de"ned.
Simulations were performed at other speeds when more conclusive evidence of choatic
motion was observed via these indicators. However, the speed used in the simulation
presented was chosen primarily for clearly demonstrating the transition through non-linear
phenomena.

6. CONCLUSIONS

Non-linear vibration in a driveline which incorporates a Hooke's joint has been studied
via an asymptotic method as well as numerical simulation. In particular, torsional vibration
due to a #uctuating angular velocity ratio across the joint has been found to occur for
particular input shaft speeds and for su$ciently large Hooke's joint angles. Linear analysis
was used for predicting the onset of parametric instabilities using the method of averaging.
Numerical simulations of the full non-linear equations of motion have shown the existence
of parametric resonance as well as quasi-periodic and chaotic motion. It has been shown for
increasing angle of misalignment in shafts, that onset of chaotic motion was characterized
by the quasiperiodic route. From a practical point of view, the results obtained have shown
that parametric instabilities of the subharmonic type close to the higher natural frequency
as well as the combination type can be a problem for low Hooke's joint angles. It was also
seen that very small variations in input shaft frequency as well as Hooke's joint angle could
in#uence strongly the type of torsional vibrations of the system. This behaviour is
a promising basis for the detailed examination of an experimental model of a driveline
con"guration incorporating a Hooke's joint.
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